Multirate Numerical Integration for Parabolic PDEs
نویسنده
چکیده
To solve PDE problems with different time scales that are localized in space, multirate time integration is examined. This technique enables one to use large time steps for slowly time-varying spatial regions, and small steps for rapidly varying ones. Multirate time stepping is coupled with the local uniform grid refinement and provides a robust and efficient method for the target problem class. We primarily consider implicit time stepping methods, suitable for parabolic problems. Numerical results are presented for a test problem.
منابع مشابه
THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کاملGamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients
Implicit schemes are popular methods for the integration of time dependent PDEs such as hyperbolic and parabolic PDEs. However the necessity to solve corresponding linear systems at each time step constitutes a complexity bottleneck in their application to PDEs with rough coefficients. We present a generalization of gamblets introduced in [51] enabling the resolution of these implicit systems i...
متن کاملFlatness of Semilinear Parabolic PDEs - A Generalized Cauchy-Kowalevski Approach
A generalized Cauchy-Kowalevski approach is proposed for flatness-based trajectory planning for boundary controlled semilinear systems of PDEs in a one-dimensional spatial domain. For this, the ansatz presented in [16] using formal integration is generalized towards a unified design framework, which covers linear and semilinear PDEs including rather broad classes of nonlinearities arising in ap...
متن کاملFlatness of semilinear parabolic PDEs - A generalized Chauchy-Kowalevski approach
A generalized Cauchy-Kowalevski approach is proposed for flatness-based trajectory planning for boundary controlled semilinear systems of PDEs in a one-dimensional spatial domain. For this, the ansatz presented in [16] using formal integration is generalized towards a unified design framework, which covers linear and semilinear PDEs including rather broad classes of nonlinearities arising in ap...
متن کاملMaximum Norm Error Estimates for Difference Schemes for Fully Nonlinear Parabolic Equations
This article establishes error bounds for finite difference schemes for fully nonlinear parabolic Partial Differential Equations (PDEs). For classical solutions the global error is bounded by a known constant times the truncation error of the exact solution. As a corollary, this gives a convergence rate of 1 or 2 for first or second order accurate schemes, respectively. Our results also apply f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008